Схемы и конструкции наружных тепловых сетей. Схемы и конфигурации тепловых сетей

27.10.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Коммерческий риск (риск снижения объемов услуг) минимизируется правильным выбором маркетинговой стратегии и проведением рекламных акций, непрерывного мониторинга потребностей клиентов, осуществлением гибкой ассортиментной политики. Следует учесть, что при финансово-экономической оценке проекта, принималась осторожная оценка объемов услуг.

Риск доходности(неполучения намеченного уровня доходности проекта) минимизируется за счет гибкой тарифной политики, выбора размера цен на услуги на среднем рыночном уровне, контроля издержек.

Политические риски в определенной мере поддаются ограничению за счет контактов с городскими органами управления, юридической поддержкой проекта в ходе его реализации.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ

ЗАДАЧИ ГИДРАВЛИЧЕСКОГО РАСЧЕТА

Задачи гидравлического расчета:

1) определение диаметров трубопроводов;

2) определение падения давления (напора);

3) определение давлений (напоров) в различных точках сети;

4) увязка всех точек системы при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.

В некоторых случаях может быть поставлена также задача определения пропускной способности трубопроводов при известном их диаметре и заданной потере давления.

Результаты гидравлического расчета используют для:

1) определения капиталовложений, расхода металла (труб) и основного объема работ по сооружению тепловой сети;

2) установления характеристик циркуляционных и подпиточных насосов, количества насосов и их размещения;

3) выяснения условий работы источников теплоты, тепловой сети и абонентских систем и выбора схем присоединения теплопотребляющих установок к тепловой сети;

5) разработки режимов эксплуатации систем теплоснабжения.

Исходными данными для проведения гидравлического расчета должны быть заданы схема и профиль тепловой сети, указаны размещение источников теплоты и потребителей и расчетные нагрузки.

СХЕМЫ И КОНФИГУРАЦИИ ТЕПЛОВЫХ СЕТЕЙ

Тепловая сеть является соединительным и транспортным звеном системы теплоснабжения.

Она должна обладать следующими качествами:

1. надежностью; они должны сохранять способность непрерывной подачи теплоносителя к потребителю в необходимом количестве в течение всего года, за исключением кратковременного перерыва для профилактического ремонта в летнее время;

2. управляемостью – т.е. обеспечивать необходимый режим работы, возможность совместной работы источников теплоснабжения и взаимного резервирования магистралей.

Необходимый режим работы – это быстрое и точное распределение теплоносителя по тепловым пунктам в нормальных условиях, в критических ситуациях, а также при совместной работе источников теплоты для экономии топлива.

Схема тепловой сети определяется:

Размещением источников теплоты (ТЭЦ или котельных) по отношению к району теплового потребления;

Характером тепловой на грузки потребителей района;

Видом теплоносителя.

Основные принципы, которыми следует руководствоваться при выборе схемы тепловой сети - надежность и экономичность теплоснабжения. При выборе конфигурации тепловых сетей следует стремиться к получению наиболее простых решений и наименьшей длины теплопроводов.

Повышение надежности сети осуществляется следующими методами:

Повышением надежности отдельных элементов, входящих в систему;

Применением «щадящего» режима работы системы в целом или наиболее повреждаемых ее элементов путем поддержания температуры воды в подающих линиях 100°С и выше, а в обратных линиях 50°С и ниже;

Резервированием, т.е. введением в систему дополнительных элементов, которые могут заменить полностью или частично элементы, вышедшие из строя.

По степени надежности все потребители делятся на две категории:

I – лечебные учреждения со стационарами, промышленные предприятия с постоянным потреблением теплоты на технологические нужды, группы городских потребителей с тепловой мощностью 30 МВт. Перерыв в подаче теплоты допускается только на время переключения, т.е. не более 2 часов;

II – все остальные потребители.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и в то же время достаточно надежным решением служит прокладка однотрубного паропровода с конденсатопроводом.

Необходимо иметь в виду, что дублирование сетей приводит к значительному возрастанию их стоимости и расхода материалов, в первую очередь стальных трубопроводов. При укладке вместо одного трубопровода, рассчитанного на 100 %-ую нагрузку, двух параллельных, рассчитанных на 50 %-ную нагрузку, площадь поверхности трубопроводов возрастает на 56 %. Соответственно возрастают расход металла и начальная стоимость сети.

Более сложной задачей считается выбор схемы водяных тепловых сетей, т.к. их нагрузка менее концентрирована.

Водяные сети менее долговечны по сравнению с паровыми из-за:

Большей подверженности наружной коррозии стальных трубопроводов подземных водяных сетей по сравнению с паропроводами;

Чувствительности к авариям из-за большей плотности теплоносителя (особенно в крупных системах при зависимом присоединении отопительных установок к тепловой сети).

При выборе схемы водяных тепловых сетей особое внимание уделяют вопросам надежности и резервирования систем теплоснабжения.

Водяные тепловые сети разделяться на магистральные и распределительные .

К магистральным обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой.

Режим работы магистральных тепловых сетей должен обеспечивать наибольшую экономичность при выработке и транспорте теплоты за счет совместной работы ТЭЦ и котельных.

Режим работы распределительных сетей должен обеспечивать наибольшую экономию теплоты при ее использовании за счет регулирования параметров и расхода теплоносителя в соответствии с необходимым режимом потребления, упрощения схем тепловых пунктов, снижения расчетного давления для их оборудования и уменьшения количества регуляторов отпуска теплоты для отопления.

Теплоноситель поступает из магистральных сетей в распределительные сети и по распределительным сетям подается через групповые тепловые пункты или местные тепловые пункты к теплопотребляющим установкам абонентов. Непосредственное присоединение тепловых потребителей к магистральным сетям допускается только при присоединении крупных промышленных предприятий.

Магистральные тепловые сети с помощью задвижек разделяются на секции длиной 1-З км. При раскрытии (разрыве) трубопровода место отказа или аварии локализуется секционирующими задвижками. Благодаря этому уменьшаются потери сетевой воды и сокращается длительность ремонта вследствие уменьшения времени, необходимого для дренажа воды из трубопровода перед проведением ремонта и для заполнения участка трубопровода сетевой водой после ремонта.

Расстояние между секционирующими задвижками выбирается из условия, чтобы время, требуемое для проведения ремонта, было меньше времени, в течение которого внутренняя температура в отапливаемых помещениях при полном отключении отопления при расчетной наружной температуре для отопления не опускалась ниже минимального предельного значения, которое принимают обычно 12-14 °С в соответствии с договором теплоснабжения. Время, необходимое для проведения ремонта, возрастает с увеличением диаметра трубопровода, а также расстояния между секционирующими задвижками.

Рис.1. Принципиальная схема двухтрубной тепловой сети с двумя магистралями: 1 – коллектор ТЭЦ; 2 – магистральная сеть; 3 – распределительная сеть; 4 – секционирующая камера; 5 – секционирующая задвижка; 6 – насос; 7 – блокирующая связь.

Расстояние между секционирующими задвижками должно быть меньше при больших диаметрах трубопроводов и при более низкой расчетной наружной температуре для отопления.

Условие проведения ремонта теплопровода большого диаметра за период допустимого снижения внутренней температуры в отапливаемых зданиях трудно выполнить, так как время ремонта существенно возрастает с увеличением диаметра.

В этом случае необходимо предусматривать системное резервирование теплоснабжения при выходе из строя участка тепловой сети, если не выполняется вышеприведенное условие о времени ремонта. Одним из методов резервирования является блокировка смежных магистралей.

Секционирующие задвижки размещают в узлах присоединения распределительных сетей к магистральным тепловым сетям.

В этих узловых камерах кроме секционирующих задвижек размещаются также головные задвижки распределительных сетей, задвижки на блокирующих линиях между смежными магистралями или между магистралями и резервными источниками теплоснабжения, например районными котельными.

В секционировании паровых магистралей нет необходимости, так как масса пара, требующаяся для заполнения длинных паропроводов, невелика. Секционные задвижки должны быть оборудованы электро- или гидроприводом и иметь телемеханическую связь с центральным диспетчерским пунктом. Распределительные сети должны иметь присоединение к магистрали с обеих сторон секционирующих задвижек с тем, чтобы можно было обеспечить бесперебойное теплоснабжение абонентов при авариях на любом секционированном участке магистрали.

Блокировочные связи между магистралями могут выполняться однотрубными.

В зданиях особой категории, которые не допускают перерывов в теплоснабжении, должна быть предусмотрена возможность резервного теплоснабжения от газовых или электрических нагревателей или же от местных котельных на случай аварийного прекращения централизованного теплоснабжения.

По СНиП 2.04.07-86 допускается уменьшение подачи теплоты в аварийных условиях до 70 % суммарного расчетного расхода (максимально-часового на отопление и вентиляцию и среднечасового на горячее водоснабжение). Для предприятий, в которых не допускаются перерывы в подаче теплоты, должны предусматриваться дублированные или кольцевые схемы тепловых сетей. Расчетные аварийные расходы теплоты должны приниматься в соответствии с режимом работы предприятий.

Радиус действия тепловой сети (рис.1) 15 км. До конечного района теплопотребления сетевая вода передается по двум двухтрубным транзитным магистралям длиной 10 км. Диаметр магистралей на выходе с ТЭЦ 1200 мм. По мере распределения воды в попутные ответвления диаметры магистральных линий уменьшаются. В конечный район теплового потребления сетевая вода вводится по четырем магистралям диаметром 700 мм, а затем распределяется по восьми магистралям диаметром 500 мм. Блокировочные связи между магистралями, а так же резервирующие насосные подстанции установлены только на линиях диаметром 800 мм и более.

Такое решение допустимо в том случае, когда при принятом расстоянии между секционирующими задвижками (на схеме 2 км) время, необходимое для ремонта трубопровода диаметром 700 мм, меньше времени, в течение которого внутренняя температура отапливаемых зданий при отключении отопления при наружной температуре 1 снизится от 18 до 12 °С (не ниже).

Блокировочные связи и секционирующие задвижки распределены таким образом, что при аварии на любом участке магистрали диаметром 800 мм и более обеспечивается теплоснабжение всех абонентов, присоединенных к тепловой сети. Теплоснабжение абонентов нарушается только при авариях на линиях диаметром 700 мм и менее.

В этом случае прекращается теплоснабжение абонентов, расположенных за местом аварии (по ходу теплоты).

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ посредством соединения их магистралей блокировочными связями. В этом случае может быть создана объединенная кольцевая тепловая сеть с несколькими источниками питания (рис. 2). В такую же систему могут быть в ряде случаев объединены тепловые сети ТЭЦ и крупных районных или промышленных котельных.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарный котельный резерв на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источника ми теплоты.

Блокирующие связи между магистралями большого диаметра должны иметь достаточную пропускную способность, обеспечивающую передачу резервирующих потоков воды. В необходимых случаях для увеличения пропускной способности блокирующих связей сооружаются насосные подстанции.

Независимо от блокирующих связей между магистралями целесообразно в городах с развитой нагрузкой горячего водоснабжения предусматривать перемычки сравнительно небольшого диаметра между смежными распределительными тепловыми сетями для резервирования нагрузки горячего водоснабжения.

При диаметрах магистралей, отходящих от источника теплоты, 700 мм и менее обычно применяют радиальную (лучевую) схему тепловой сети с постепенным уменьшением диаметра по мере удаления от станции и снижения присоединенной тепловой нагрузки (рис. 3). Такая сеть наиболее дешевая по начальным затратам, требует наименьшего расхода металла на сооружение и проста в эксплуатации. Однако при аварии на магистрали радиальной сети прекращается теплоснабжение абонентов, присоединенных за местом аварии. Например, при аварии в точке «а» на радиальной магистрали 1 прекращается питание всех потребителей, расположенных по направлению трассы от ТЭЦ после точки а. Если происходит авария на магистрали вблизи станции, то прекращается теплоснабжение всех потребителей, присоединенных к магистрали. Такое решение допустимо, если время ремонта трубопроводов диаметром не менее 700 мм удовлетворяет вышесказанному условию.

Для более надежного теплоснабжения тепловые сети должны сооружаться по блочному принципу. Блоком должна являться распределительная сеть с радиусом действия 500-800 м. Каждый блок должен обеспечивать теплоснабжение жилого микрорайона примерно в 10 тыс квартир или тепловая мощность которого 30-50 МВт. Блок должен быть непосредственно присоединен к коллектору источника, или иметь двустороннее теплоснабжение от тепловых магистралей.

На тепловой карте района ориентировочно намечаются места ГТП;

После размещения ГТП намечают возможные трассы магистралей и перемычек между ними;

Намечают размещение распределительных сетей.

Распределительные сети проектируются тупиковыми, секционирующие задвижки не проектируются.

Распределительные сети разрешается прокладывать по подвалам зданий

Тепловая энергия в виде горячей воды или пара транспортируется от источника теплоты (ТЭЦ или крупной котельной) к тепловым потребителям по специальным трубопроводам, называемым тепловыми сетями.

Тепловая сеть - один из наиболее трудоемких элементов систем централизованного теплоснабжения. Она представляет собой теплопроводы- сложные сооружения, состоящие из соединенных между собой сваркой стальных труб, тепловой изоляции, компенсаторов тепловых удлинений, запорной и регулирующей арматуры, строительных конструкций, подвижных и неподвижных опор, камер, дренажных и воздухоспускных устройств.

По количеству параллельно проложенных теплопроводов тепловые сети могут быть однотрубными, двухтрубными и многотрубными.

Однотрубные сети наиболее экономичны и просты. В них сетевая вода после систем отопления и вентиляции должна полностью использоваться для горячего водоснабжения. Однотрубные тепловые сети являются прогрессивными, с точки зрения значительного ускорения темпов строительства тепловых сетей. В трехтрубных сетях две трубы используют в качестве подающих для подачи теплоносителя с разными тепловыми потенциалами, а третью трубу - в качестве общей обратной. В четырехтрубных сетях одна пара теплопроводов обслуживает системы отопления и вентиляции, а другая - систему горячего водоснабжения и технологические нужды.

В настоящее время наибольшее распространение получили двухтрубные тепловые сети , состоящие из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей. Благодаря высокой аккумулирующей способности воды, позволяющей осуществлять дальнее теплоснабжение, а также большей экономичности и возможности центрального регулирования отпуска теплоты потребителям, водяные сети имеют более широкое применение, чем паровые.

Водяные тепловые сети по способу приготовления воды для горячего водоснабжения разделяются на закрытые и открытые . В закрытых сетях для горячего водоснабжения используется водопроводная вода, нагреваемая сетевой водой в водоподогревателях. При этом сетевая вода возвращается на ТЭЦ или в котельную. В открытых сетях вода для горячего водоснабжения разбирается потребителями непосредственно из тепловой сети и после использования ее в сеть уже не возвращается.

Тепловые сети разделяют на магистральные , прокладываемые на главных направлениях населенных пунктов, распределительные - внутри квартала, микрорайона и ответвления к отдельным зданиям.

Радиальные сети (рис. 1а) сооружают с постепенным уменьшением диаметров теплопроводов в направлении от источника теплоты. Такие сети наиболее просты и экономичны по начальным затратам. Их основ ной недостаток - отсутствие резервирования. Во избежание перерывов в теплоснабжении (в случае аварии на магистрали радиальной сети прекращается теплоснабжение потребителей, присоединенных на аварийном участке) должно предусматриваться резервирование подачи теплоты потребителям за счет устройства перемычек между тепловыми сетями смежных районов и совместной работы источников теплоты (если их несколько). Радиус действия водяных сетей во многих городах достигает значительной величины (15–20 км).

Рис. 1. Схемы тепловых сетей: тупиковая (а) и кольцевая (б)

1- лучевой магистральный теплопровод; 2 - тепловые потребители; 3 - пере­мычки; 4 - районные (квартальные) котельные; 5 - секционирующие камеры; 6 - кольцевая магистраль; 7 - центральные тепловые пункты; 8 - промыш­ленные предприятия

Устройством перемычек тепловая сеть превращается в радиально-кольцевую, происходит частичный переход к кольцевым сетям. Для предприятий, в которых не допускается перерыв в теплоснабжении, предусматривают дублирование или кольцевые (с двусторонней подачей теплоты) схемы тепловых сетей. Хотя кольцевание сетей существенно удорожает их, но зато в крупных системах теплоснабжения значительно повышается надежность теплоснабжения, создается возможность резервирования, а также повышается качество гражданской обороны.


Паровые сети устраивают преимущественно двухтрубными. Возврат конденсата осуществляется по отдельной трубе - конденсатопроводу. Пар от ТЭЦ по паропроводу со скоростью 40–60 м/с и более идет к месту потребления. В тех случаях, когда пар используется в теплообменниках, конденсат его собирается в конденсатных баках, откуда насосами по конденсатопроводу возвращается на ТЭЦ.

Рис. 2. Прокладка теплопрово­дов на мачтах

Рис. 3. Проходной канал из сборных железобетонных блоков

Направление трассы тепловых сетей в городах и других населенных пунктах должно предусматриваться по районам наиболее плотной тепловой нагрузки с учетом существующих подземных и надземных сооружений, данных о составе грунтов и уровне стояния грунтовых вод, в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог, вне проезжей части и полосы зеленых насаждений. Следует стремиться к наименьшей протяженности трассы, а следовательно, к меньшим объемам работ по прокладке.

Рис. 4. Непроходные каналы марки КЛ (а), КЛп (б) и КЛс (в)

По способу прокладки тепловые сети делят на подземные и надземные (воздушные). Надземная прокладка труб (на отдельно стоящих мачтах или эстакадах, на кронштейнах, заделываемых в стены здания) применяется на территориях промышленных предприятий, при сооружении тепловых сетей вне черты города, при пересечении оврагов и т. д.. Надземная прокладка тепловых сетей рекомендуется преимущественно при высоком стоянии грунтовых вод. Преобладающим способом прокладки трубопроводов тепловых сетей является подземная прокладка: в проходных каналах и коллекторах совместно с другими коммуникациями; в полупроходных и непроходных каналах; бесканальная (в защитных оболочках различной формы и с засыпной теплоизоляцией).

Наиболее совершенный, но и более дорогой способ представляет собой прокладка теплопроводов в проходных каналах, которые применяют при наличии нескольких теплопроводов больших диаметров. При температуре воздуха в каналах более 50 °С предусматривают естественную или механическую вентиляцию.

Вытяжные шахты на трассе размещают примерно через 100 м. Приточные шахты располагают между вытяжными и по возможности объединяют с аварийными люками. На участках тепловых сетей с большим числом трубопроводов и высокой температурой теплоносителей устраивают механическую вентиляцию. При температуре воздуха в каналах ниже 40 °С их периодически проветривают, открывая люки и входы. Во время производства ремонтных работ можно применять механический передвижной вентиляционный агрегат. В больших городах строят так называемые городские коллекторы, в которых прокладывают теплопроводы, водопровод, электрические и телефонные кабели.

Полупроходные каналы состоят из стеновых блоков Г-образной формы, железобетонных днищ и перекрытий. Строят их под проездами с интенсивным уличным движением, под железнодорожными путями, при пересечении зданий, где затруднено вскрытие теплопроводов для ремонта. Высота их обычно не превышает 1600 мм, ширина прохода между трубами 400–500 мм. В практике централизованного теплоснабжения наиболее широко применяются непроходные каналы .

Рис. 5. Конструктивные элементы тепловых сетей

а -камера тепловой сети; 1- сальниковые компенсаторы; 2 - манометры; 3 - неподвижная опора; 4 - канал; б -размещение ниш по трассе теплопро­водов: Н - неподвижная опора; П - подвижная опора; в - размещение ком­пенсатора в нише:1 - подающий трубопровод; 2 - обратный трубопровод; 3 -стенка; г - сальниковый компенсатор; 1 - патрубок; 2 - грундбукса; 3 - набивка-шнур; 4 - кольцо уплотнительное; 6 - корпус; 6 - контрбукса; 7 - кольцо предохранительное; 8- болт: 9 - шайба; 10 - гайка; д - неподвиж­ная щитовая опора; 1 - железобетонная плита-щит; 2 - приварные упоры; 3 -канал; 4 - бетонная подготовка: 5 -трубопроводы; 6 - дренажное от­верстие; е - катковая подвижная опора: 1 - каток; 2 - направляющие; 3 - металлическая подкладка

Рис. 6. Бесканальная проклад­ка теплопроводов в монолитных оболочках из армированного пено­бетона

1- армопенобетонная оболочка; 2 - песчаная подсыпка; 3 - бетонная под­готовка; 4 - грунт

Разработаны типовые каналы трех видов: канал марки КЛ, состоящий из лотков и железобетонных плит перекрытия; канал марки КЛп, состоящий из плиты-днища и лотка и канал марки КЛс, состоящий из двух лотков, уложенных один на другой и соединенных на цементном растворе с помощью двутавровых балок. По трассе подземного теплопровода устраивают специальные камеры и колодцы для установки арматуры, измерительных приборов, сальниковых компенсаторов и др., а также ниши для П-образных компенсаторов. Подземный теплопровод прокладывают на скользящих опорах. Расстояние между опорами принимают в зависимости от диаметра труб, причем опоры подающего и обратного трубопроводов устанавливают вразбежку.

Тепловые сети в целом, особенно магистральные, являются серьезным и ответственным сооружением. Их стоимость, по сравнению с затратами на строительство ТЭЦ, составляет значительную часть.

Бесканальный способ прокладки теплопровода - самый дешевый. Применение его позволяет снизить на 30–40% строительную стоимость тепловых сетей, значительно уменьшить трудовые затраты и расход строительных материалов. Блоки теплопроводов изготовляют на заводе. Монтаж теплопроводов на трассе сводится лишь к укладке автокраном блоков в траншею и сварке стыков. Заглубление тепловых сетей от поверхности земли или дорожного покрытия до верха перекрытия канала или коллектора принимается, м: при наличии дорожного покрытия - 0,5, без дорожного покрытия - 0,7, до верха оболочки бесканальной прокладки - 0,7, до верха перекрытия камер - 0,3.

В настоящее время свыше 80% тепловых сетей проложены в непроходных каналах, около 10% - надземные, 4% - в проходных каналах и тоннелях и около б% - бесканальные. Средний срок службы подземных канальных теплопроводов вдвое меньше нормативного и не превышает в среднем 10–12 лет, а бесканальных с изоляцией на битумовяжущей основе - не более 6- 8 лет. Основной причиной повреждений является наружная коррозия, возникающая из-за отсутствия или некачественного нанесения антикоррозионных покрытий, неудовлетворительного качества или состояния покровных слоев, допускающих избыточное увлажнение изоляции, а также вследствие затопления каналов из-за неплотностей конструкций. Как у нас в стране, так и за рубежом ведется постоянный поиск, а в последние годы особенно интенсивно, в направлении повышения долговечности теплопроводов, надежности их работы и снижения затрат на их сооружение.

Учитывая зависимость отчисла потребителœей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определœенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.

Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или посœелка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.

Для повышения надежности обеспечения потребителœей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, в случае если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителœей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. К примеру, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).

В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но исходя из очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Вместе с тем, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.

Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединœены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединœены по тупиковой схеме.

Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на базе полимербетонных смесей.

Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Вместе с тем, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Скользящие опоры используют в тех случаях, когда основание под опоры должна быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. По этой причине при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.

Неподвижные опоры служат для распределœения термических удлинœений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединœенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинœений и разгрузки теплопроводов от температурных напряжений на теплосœети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осœевые (сальниковые и линзовые) компенсаторы.

Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.

С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинœении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.

Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рисунке. При подземных прокладках теплосœетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 и 2 сети к потребителям. Горячая вода в здание подается по теплопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 теплопроводы устанавливают на опоры 5 и покрывают изоляцией. Стены камер выкладывают из кирпича, блоков или панелœей, перекрытия сборные – из желœезобетона в виде ребристых или плоских плит, дно камеры – из бетона. Вход в камеры через чугунные люки. Важно заметить, что для спуска в камеру под люками в стене заделывают скобы или устанавливают металлические лестницы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таки расчетом, чтобы расстояния между стенами и трубами были не менее 500 м.

Вопросы для самоконтроля:

1. Что называют тепловыми сетями?

2. Как классифицируются тепловые сети?

3. В чем преимущества и недостатки кольцевой и тупиковой сетей?

4. Что называют теплопроводом?

5. Назовите способы прокладывания тепловых сетей.

6. Назовите назначение и виды изоляции теплопроводов.

7. Назовите трубы, из которых монтируют тепловые сети.

8. Назовите назначение компенсаторов.

С. теплоснабжения – это совокупность устройств для производства тепловой энергии, её транспортирование, распределение и потреблении.

Схема:

1) Источник тепловой энергии (ТЭЦ, РК, ГК, АК, и тд.). 2) Теплопроводы для транспортирования тепловой энергии от источника к потребителю. 3) Тепловые пункты для присоединения, учёта и контроля потребления тепловой энерг. 4) Потребители тепловой энергии (ОВ + ГВС + технологические нужды).

Виды тепловых пунктов: 1. центральные (обслуживают несколько зданий или кварталов и отдельные здания). 2. местные (обслуживают здание в котором и расположены).

2.Классификация систем теплоснабжения.

1
) По расположению источника тепловой эн.: Централизованная (источник тепловой энергии обслуживает 2 и более здания). Децентрализованная (обслуживает одно здание или отдельные помещения). 2) По теплоносителю (водяные и паровые). 3) По способу приготовления воды на ГВС: Открытые (вода для ГВС отбирается из тепловых сетей), Закрытые (вода готовится в водоподогревателях). 4) По количеству трубопроводов (системы теплоснабжения бывают 1,2,3,4,5 и т.д. трубные). Однотрубные бывают только открытые:

Основной тип теплоснабжения это двухтрубная система. (принимается в тех случаях когда тепловая нагрузка может быть обеспечена одним видом теплоносителя и приблизительно одинаковой температурой. 2-х трубные системы могут быть открытые и закрытые.

трёхтрубная:

четырёхтрубная в жилом квартале:

для обеспечения постоянной температуры воды

системе ГВС при малом водоразборе или при

его отсутствии

5) По конфигурации (тс бывают тупиковые, кольцевые и кольцевые с контрольно распределительными пунктами).

3. Схемы тепловых сетей.

Тупиковая: достоинства (простая схема, небольшие капиталовложения), недостатки (низкая надёжность, т.к. потребитель получает тепловую эн. только с одного направления, а при аварии полностью отключается от системы теплоснабжения).

С
хема:

С целью повышения надёжности все ТС делят на отдельные участки с регулирующими задвижками для сокращения ликвидации аварии.

Кольцевая: достоинства (более высокая надёжность т.к. потребители могут получать тепловую эн. с двух направлений. К кольцевой сети могут подключаться несколько источников тепловой эн., что повышает надёжность. Возможность использовать тепловую эн. источниками работающими на разных видах топлива). Недостатки (повышенные капиталовложения на 20-30 %. Более сложное регулирование тепловых нагрузок).

1. Магистральные трубопроводы тс.

2. Распределительные

3. Внутриквартальные

Кольцевая с контрольно распределительными пунктами.

Схема:

1.2.3. магистрали распределительные

квартальные. 4. секционная задвижка

5. головные задвижки распределител.

сетей. 6. Одно или 2-х трубная

перемычка.

Задвижка (а) открыта. при аварии (а)

закрыта, открыты (c , d ).

Устройство КРП увеличивает

затраты на 10%.

4.Опоры трубопроводов тепловых сетей.

Опоры бывают подвижные и не подвижные. Подвижные (скользящие, подвесные, роликовые, котковые). Опоры предназначены для восприятия веса трубопровода и обеспечивают его перемещение при температурных деформациях. Скользящие применяются при всех видах прокладки.



1. трубопровод

2. скользящая опора

3. опорная подушка

4. бетон

Роликовая опора:

1. ролик

µ ТР = 0,4

Котковая опора:

1
. каток

µ ТР = 0,2

Роликовые и катковые опоры не применяются при подземной безканальной, канальной и не проходных каналах, прокладке, т.к. требуют обслуживания.

Подвесные опоры:

1. тяга

2. пружина

3. хомут

Неподвижные опоры предназначены для восприятиявеса трубопровода и жёстко фиксирует трубопровод вместе её установки (хомутове, щитовые, лобовые).

Хомутовые опоры: 1. хомут


2. упоры

Применяется при всех видах прокладки

Щитовая опора :


1. железобетонный щит

воспринимающий нагрузку.

2.четырёхупорная неподвижная

опора

Применяется при всех видах

прокладки кроме надземной

на высоких опорах.

5. Компенсаторы тепловых сетей и правила их установки.

Компенсаторы служат для восприятия изменения длины трубопровода при его температурных деформациях. Компенсаторы бывают осевые и радиальные.

Осевые (сальниковые, линзовые, сильфонные).

Сальниковые:


1. корпус.2. стакан. 3. опорное

кольцо. 4. уплотнительное

кольцо. 5. Сальниковая набивка.

Достоинства (малые габариты,

небольшое гидравлическое

сопротивление, небольшие

затраты).

Недостатки (требуют переоди

ческого обслуживания, возможен

перекос осей корпуса и стакана,

что приводит к заклиниванию).

Применяются (на трубопроводах

d ≥100, при давлениях Р ≤ 2.5

МПа). ∆ L = 350мм.

Линзовые:


1. линза. 2. металлическая вставка для

уменьшения гидропотерь.

компенсирующая способность одной линзы

5мм. Установка более 5 линз нежелательна.

Достоинства(допускают радиальные

перемещения).

Сильфонные: + Не требуют обслуживания

- Большая стоимость

Радиальная компенсация осуществляется за счёт изгибов криволинейных участков, изгибов трубопровода (самокомпенсация), или за счёт специальных вставок.

Самокомпенсация: Специальные вставки:


омегообразный компенсатор

П
– образный компенсатор Достоинства П – образных компенсаторов:

устанавливается и изготавливается не посред

ственно на стройплощадках и не большие кап.

затраты.

Недостатки: увеличенные гидравлические

сопротивления.

Правила установки компенсаторов: 1. П – образные компенсаторы устанавливаются между неподвижными опорами по середине. 2. Устройства устанавливаются справа по ходу теплоносителя. 3. Острые углы не допускаются, если имеется острый угол то в углу необходима установка не подвижной опоры. 4. Сальниковые компенсаторы устанавливаются у неподвижной опоры. Сальниковые комп. запрещается устанавливать на криволинейных участках. 6. Арматура устанавливается между опорой и сальниковым комп.

Подготовленный теплоноситель (пар определенного давления или вода, нагретая до заданной температуры) подается по тепловым сетям к потребителям теплоты. Тепловая сеть состоит из теплопроводов, т. е. соединенных сваркой стальных труб, тепловой изоляции, запорной и регулировочной арматуры, насосных подстанций, авторегуляторов, компенсаторов тепловых удлинений, дренажных и воздухоспускных устройств, подвижных и неподвижных опор, камер обслуживания и строительных конструкций.

В настоящее время тепловые сети выполняются большей частью двухтрубными, состоящими из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей.

Схема тепловой сети определяется размещением источников теплоты (ТЭЦ или районных котельных) по отношению к району теплового потребления, характером тепловой нагрузки и видом теплоносителя. Схема сети должна обеспечивать надежность и экономичность эксплуатации; протяженность сети должна быть минимальной, а конфигурация по возможности простой.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и в то же время достаточно надежным решением служит прокладка однотрубного паропровода с конденсатопроводом.

Более сложной задачей считается выбор схемы водяных тепловых сетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные тепловые сети в современных городах обслуживают большое число потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий.

Водяные тепловые сети должны четко разделяться на магистральные и распределительные. К магистральным обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой. Теплоноситель поступает из магистральных в распределительные сети и по распределительным сетям подается через групповые тепловые подстанции или местные тепловые подстанции к теплопотребляющим установкам абонентов. Непосредственное присоединение тепловых потребителей к магистральным сетям не следует допускать, за исключением случаев присоединения крупных промышленных предприятий.

Различают радиальные и кольцевые тепловые сети. Наиболее часто применяются радиальные сети, которые характеризуются постепенным уменьшением диаметра по мере удаления от источника теплоснабжения и снижения тепловой нагрузки (рис. 26). Такие сети просты в эксплуатации и требуют наименьших капитальных затрат.

Недостатком радиальных сетей является отсутствие резервирования. При аварии на одной из магистралей, например в точке а магистрали I , прекратится подача теплоты всем потребителям, расположенным после точки а по ходу теплоносителя. При аварии в начале магистрали прекращается теплоснабжение всех потребителей; присоединенных к этой магистрали. Для резервирования снабжения потребителей теплотой могут предусматриваться перемычки между магистралями. Перемычки прокладываются повышенного диаметра, они соединяют середины или концы магистралей.

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае может быть создана объединенная кольцевая тепловая сеть с несколькими источниками питания. Схема такой сети показана на рис. 27. В такую же систему в ряде случаев могут быть объединены тепловые сети ТЭЦ и крупных районных или промышленных котельных.

Кольцевание сетей значительно удорожает сети, но повышает надежность теплоснабжения. Кольцевание промышленных тепловых сетей иногда является обязательным при снабжении теплотой потребителей, не допускающих перерывов в подаче теплоносителя, как правило, для технологических потребностей. В этом случае кольцевание может быть заменено дублированием, т. е. прокладкой параллельно двух паропроводов или теплопроводов. Второй паропровод или теплопровод в этом случае находится в «горячем резерве». При соответствующих обоснованиях на промышленных предприятиях предусматривается резервная мощность тепловых сетей для последующего расширения предприятия или отдельных цехов.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарный котельный резерв на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источниками теплоты.

Последние материалы сайта